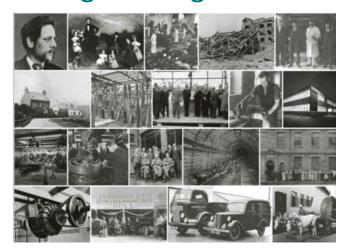


Fenner® Belt Drives

Reliable | Trusted | Connected

Exceptional Performance

Fenner power transmission products are world renowned for delivering the ultimate combination of rugged construction, reliable and efficient performance and value for money - proven in the harshest environments, guaranteed to perform in yours!


All power transmission products are manufactured to exacting specifications in line with international standards, and are backed-up by a product development programme designed to keep them at the cutting edge.

Over 150 Years of Engineering Heritage

Fenner has been a leading name in power transmission for over 150 years and generations of professional engineers have placed their trust in these products.

Founded in 1861 by Joseph Henry Fenner, the company started as a manufacturer of horse hair and leather power transmission belts. In 1921, woven textile belts were developed and the company began to produce some of the finest transmission belting in the market Today, Fenner product range include transmission belts, pulleys, chains, sprockets, couplings, taper lock bushes, shaft fixings, gearboxes, motors and inverters.

Our success in the market means that today the Fenner mark is widely recognised as synonymous with exceptional products for everyday use - a fitting tribute to the designers and engineers who proudly continue to oversee these ever-improving fundamentals of power transmission.

Fenner Guarantee

Products are guaranteed in terms of the manufacturer's Standard Conditions of Business only if all components of an assembly (excluding belts) are of genuine manufacture

All products in this manual are available for purchase subject to our standard conditions of sale. To the best of our knowledge the representations concerning performance of any items contained in this manual are, at date of publication, accurate within normally accepted tolerances. We shall not, however, be liable for consequences arising from inaccuracies in drawings, specification or other information based on specifications, dimensions, calculations or information of whatsoever nature obtained from this manual nor be bounded thereto.

All products covered by this manual are manufactured to standards and or specifications adequate for the purpose for which they have been designed. We will repair, or at our discretion, replace, free of charge at point of delivery, any item or part thereof which may prove, within three months after delivery, to be defective due to faulty workmanship or material, save as aforesaid, no warranty or misrepresentation of any nature is or shall be taken to be given by us or is or can be implied.

The information contained herein is subject to alteration without notice, and accordingly, we shall not be bound to the contents of the terms hereof.

IMPORTANT NOTE

All products listed in this manual are not approved for use in aviation industries. This comprehensive range is suitable for general industrial purposes.

Reliable | Trusted | Connected

Reliable. Trusted. Connected.

Fenner's worldwide commitment to quality is a guarantee that wherever the project or customer is located, the Fenner products supplied will always meet the most exacting standards.

Complete Drive Solution for You

The complete drive solution from prime mover to driven machine in one range with one result - driven performance.

Table of Contents

Items	Page
Classic V Belt	1
Power PLUS Belt	1
Power PLUS K Belt	1
CRE PLUS Belt	2
Quattro PLUS CRE Wedge Belt	2
Quattro PLUS TW Belt	3
PolyDrive PLUS Belt	4
Concord PLUS Wedge Belt	4
QuickFix Belt	5
Power Twist Belt	5
Super TLink Belt	5
Friction Pulleys & Taper Lock®	6
Classic Timing Belt	7
HiTD High Torque Drive Belt	7
Torque Drive PLUS 3	8
Synchronous Pulleys	9
Fenner S.C.I.E.N.C.E. Explained	10
Fenner Accessories	
 Belt Tension Indicator 	11
 Alignment Laser 	12
 Pulley Groove Gauge 	12
 Belt Efficiency Kit 	12
Fenner Wedge Belt Charts	
SPZ / 3V / XPZ / QXPZ	13
SPA / XPA / QXPA	14
• SPB / 5V / XPB / QXPB	15
• SPC / QXPC	15
• 8V	15
Fenner V Belt Charts	16

Reliable | Trusted | Connected

Classic V A

Light Duty, Wrapped V-belt Relative Power 475

Ideal for high ratio or small pulley drives, the Fenner® Classic V belt has a specially treated jacket to give superior anti-static, heat and oil resistant properties which exceeds the new industry anti-ignition standards. It conforms to DIN 2215 (German Institute for Standardization) and RMA IP20.

Benefits

- > Accuracy and stability of length
- > One-shot tensioning for fit-and-forget reliability
- > Extended temperature range -40°C to +70°C

Power PLUS A

Trusted. Precision Relative Power \$100

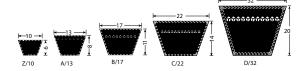
Built using advanced technology, Fenner Power PLUS transmission belts achieve economic performance by use of low elongation polyester cords and abrasion resistant impregnated jacket fabric. It conforms to DIN 7753(German Institute for Standardization) and RMA IP22.

Benefits

- > Ideal for use in single or multi-belt drives
- > Accuracy and stability of length
- > One-shot tensioning for fit-and-forget reliability
- > Extended temperature range -40°C to +70°C
- > Heat and Oil Resistant

ower PLUS K

Greater Strength. More Power Relative Power \$125


Built using advanced technology, Fenner Power PLUS K transmission belts achieve great performance by the use of high strength aramid cords and abrasion resistant impregnated jacket fabric.

Benefits

- > 25% more powerful than standard belts due to its aramid cords
- > Accuracy and stability of length
- > One-shot tensioning for fit-and-forget reliability
- Extended temperature range -40°C to +70°C
- Heat and Oil Resistant

Profile	Z	Α	В	С	D
Imperial Length		A20 -	B26 -	C49 -	D105 -
Range (inch)		A154	B238	C444	D538
Metric Length	370 -	540 -	700 -	1300 -	2740 -
Range (mm)	1750	3950	6070	11330	13700

Power PLUS

Power PLUS Belt Sections and Size Range

Profile	SPZ/3V	SPA	SPB/5V	SPC	8V / DELTA
Metric Length	487 -	732 -	1250 -	2000 -	2540 -
Range (mm)	3550	4500	8000	12500	11430

Power PLUS K BeltSections and Size Range

Profile	SPBK/5VK	SPCK	8VK
Metric Length	1250 -	2000 -	2540 -
Range (mm)	8000	12500	11430

NOTE:

All Fenner Classic V-Belts, Power PLUS and Power PLUS K are Precision Belt 🕰 eliminating the need for matching. They are fully approved by all International Standards:

- ISO 4184 (International Standards Organisation)
- BS 3790 (British Standard)
- Static conductive in accordance with ISO 1813
- Conforms to American Petroleum Institute specifications

CRE PLUS

The driving force for high ratio applications Relative Power +125

Fenner® CRE wedge belts are precision built for excellent length matching. They are manufactured from high quality polymer and textile materials for superior heat and oil resistance. They are static conductive to the ISO 1813 standard and conform to the anti-static specifications of the American Petroleum Institute (API) for similar belts. İt will not ignite under severe slip / stall conditions subject to maximum surface temperature limitations.

Benefits

- > Higher running efficiency than wrapped belts
- > 'One Shot' tensioning no matching required
- > Heat and conditionally oil resistant
- > PB® (Precision Build) technology
- > Accuracy and stability of length
- > Heat and oil resistant

Size Reference

Profile	XPZ	XPA	XPB	XPC
Metric Length Range (mm)	630 - 3550	800 - 3550	1250 - 3550	2000 - 5000

Quattro PLUS CRE

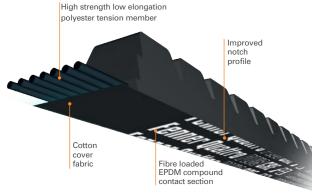
Heavy Duty, Cogged Raw Edge EPDM Wedge Belt Relative Power +150

The Fenner® Quattro PLUS CRE is a step forward in belt technology. It's high performance unique polyester tension member and EPDM contact section allows it to transmit 26% more power than traditional CRE range and offers up to 15% longer service life.

- > Synthetic rubber EPDM heavy duty wedge belt
- > Embedding compound for stable power transfer
- > Enhanced tooth profile improves belt flexibility, reducing bending resistance and increasing efficiency and life
- > Unique construction of the polyester tension member improves accuracy and stability of belt length
- > Reduced belt weight lowers inertia and reduces vibration allowing smoother running
- > Lower pre-tensioning force allows longer bearing life and extends

Sections and Size Range

Profile	QXPZ	QXPA	QXPB	QXPC
Length Range (mm)	630 - 3550	800 - 4000	1250 - 4500	2000 - 5000



Reliable | Trusted | Connected

- > Abrasion resistant compound for enhanced durability
- > Extended temperature range -40°C to +130°C
- PB® (Precision Build) technology, eliminating the need for matching
- > Conditionally oil resistant
- > Fully approved by all international standards
 - > BS 3790 (British Standard)
 - > ISO 4184 (International Standards Organisation)
 - > DIN 7753 (German Institute for Standardization)
 - > Electrically conductive in accordance with ISO 1813
 - > Conforms to American Petroleum Institute specifications

Quattro PLUS TW

Heavy Duty, Twin Wrapped Wedge Belt Relative Power \$130

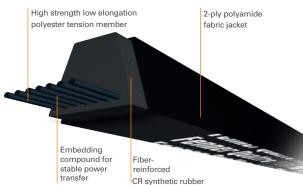
The Fenner® Quattro PLUS TW is a wrapped belt that has been specifically designed with a 2 ply outer jacket to reduce belt elongation and improve stability. Suitable for a wide range of industries and uses, this maintenance free belt transmits 30% more power than traditional wrapped wedge belts.

Benefits

- > State-of-the art wrapped chloroprene rubber construction
- > Higher modulus polyester cord reduces belt elongation
- > 2-ply outer jacket improves belt length stability and improves abrasion resistance
- > Suitable for counterbending/back-tensioners
- > Suitable for clutches
- > Extended temperature range -30°C to +80°C
- > PB® (Precision Build) technology, eliminating the need for matching
- > Conditionally oil resistant
- > Fully approved by all international standards
 - > BS 3790 (British Standard)
 - > ISO 4184 (International Standards Organisation)
 - > DIN 7753 (German Institute for Standardization)
 - > Electrically conductive in accordance with ISO 1813
 - > Conforms to American Petroleum Institute specifications

Sections and Size Range

Profile	QSPZ-TW	QSPA-TW	QSPB-TW	QSPC-TW
Length Range (mm)	1202- 3550	590 - 2932	1250 - 9000	2000 - 9500



Construction

PolyDrive PLUS A

Ribbed Belt for High Transmission Ratios

Fenner PolyDrive PLUS ribbed belt s are an ideal solution for compact drives in household appliances and heavy machinery. The ribbed belts enable economic solutions even under difficult drive conditions, such as large transmission ratios, high belt speeds, small pulley diameters and back idler pulleys.

Benefits

- > High belt speeds up to 60m/s (belt speeds above 40m/s require special pulley materials)
- > High power output
- > Low vibration, efficient belt
- > Long service life
- > Fully approved by all international standards
- > Geometry of each section complies to ISO 9982
- > Static conductive to ISO 1813

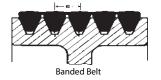
Size Reference

Profile	PJ	PK	PL	PM
Metric Length Range (mm)	406 - 2210	673 - 2680	1075 - 4051	2693 - 8408

Concord PLUS

Fenner® Wedge Belts combined with a Neoprene/Fabric Band to form a Single Belt

The advantages of Fenner® wedge belts are combined with a neoprene/fabric band to form a single belt. Ideal for applications where pulsating or shock loads cause instability in matched sets of wedge or V belts, Fenner® Concord PLUS banded belts can provide the ideal solution by providing sufficient lateral rigidity to eliminate such problems.


Benefits

- > Eliminates belt whip, belt twist and belt turnover
- > Ideal for drives with pulsating loads
- > Heat and conditionally oil resistant
- > Supplied to suit either Fenner® ISO standard Taper Lock® pulleys or RMA standard pulleys
- > Fully approved by all international standards BS 3790 (British Standard)
- > Static conductive in accordance with ISO 1813

Size Reference

Profile	SPZ	SPA	SPB	SPC
Metric Length Range (mm)	1270 - 4000	1000 - 4500	1410 - 8000	2650 - 12500

Reliable | Trusted | Connected

QuickFix

Emergency Belt Solution

In a breakdown situation, the Fenner QuickFix belt provides you with a fast and reliable solution to get your plant up and running - with minimum downtime and fuss - whilst a replacement belt is on order.

Benefits

- > Can be made to any length in seconds
- > Easy to install, rivet-less construction, no tools necessary
- > Dual groove profile, means one belt fits both V and wedge belts
- > Jointed belting ensures minimum strip down when installing

Size Reference

Available in standard Z, A, B, C, SPZ, SPA, SPB and SPC. Comes in 5m/box in wedge belt and V belt combined

PowerTwist PLUS®

State-of-the-art Link Belting

PowerTwist PLUS belts are complementary to the range of Fenner Wedge and V-belts and are extensively used in industrial, marine, agricultural, heating, ventilation applications and fitment into inaccessible locations. They are manufactured from high strength urethane / polyester composite, ensuring the finished product is incredibly strong, yet flexible enough to work in the roughest of conditions.

Benefits

- > Can be made to any length in seconds
- > Highly resistant to heat, water, oil, chemicals etc.
- Use with Fenner® ISO standard Taper Lock® pulleys, optionally with BMA pulleys
- > Easy to install, rivet-less construction, no tools necessary
- > Reduces transmissible vibrations in some applications
- > Designed to dissipate heat.
- > Standard or optional soft back, for conveying applications
- > -40°C to +110°C temprature range

Size Reference

Available in standard Z, A, B, C, 3V, 5V, SPZ, SPA and SPB

Comes in 5m / box, 20m / box, 100 ft / box & 25ft / box

SuperTLink Belt

Longer Lasting Belt

SuperTLink Detachable V-Belts are made from a polyester/polyure-thane composite. This combination ensures a longer belt life even in the harshest conditions - up to 20 times longer in some applications.

Benefits

- > High resistance to extreme temperatures (-40° to +116°C)
- > High resistance to abrasive materials
- High resistance to water, steam, oil and most chemicals
- > Longer belt life in harsh operating conditions
- > Can be fitted easily and quickly even without dismantling the drive
- > Can be made to any length in seconds
- > Reduce transmitted vibration and belt noise by up to 50%

Size Reference

Available in standard SPZ, SPA, SPB, SPC, 3V and 5V.

Comes in 5m / box and 20m / box

Reliable | Trusted | Connected

Friction Pulleys

Taper Lock® and Pilot Bore Relative Power + 100%

Fenner friction pulleys are manufactured from high grade iron (GG25), tolerate shock loading and achieve rim speeds of up to 40m/s. Available with pilot bore fixings or using the Taper Lock® shaft fixing system for ultimate versatility.

Benefits

- Incorporate universal dual duty grooves (ISO 4183) and accept both V and wedge belts
- > Statically balanced to exceed grade G6.3 (ISO 1940)
- > Rim speeds up to a maximum of 40m/s
- Blackened to reduce corrosion, acts as an ideal primer and removes the need for cleaning coating agents prior to installation
- Consistent and high grade of accuracy e.g. groove wobble tolerance exceeds DIN 2211 part 1 requirements
- > Taper Lock® mounting for quick and simple installation
- > Special designs and sizes available

Sections and Size Range

Profile	SPZ	SPA	SPB	SPC
Sizes (mm)	56 to 630	80 to 800	112 to 1000	200 to 1250

Construction

Taper Lock®

Easy-on, Easy-off. Fenner pioneered product since 1960's

Machined to exacting tolerances in cast iron and steel, the Fenner® Taper Lock® four hole bush has been tried and tested in over 50 million applications. It is the most successful shaft fixing in the market place today with a full range of both metric and imperial sizes as well as a full range of weld-on hubs, bolt-on hubs and hub adaptors.

- > Equivalent to a shrink-on fit on uniform load applications and thus eliminating the cost of a key
- > No costly re-boring: full range of both metric and imperial available
- Special 4-hole feature for balanced assemblies
- > High grade, close grain iron material

Sections and Size Range

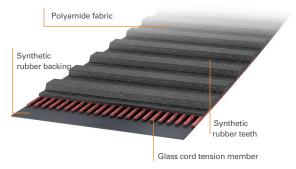
			1210						
Bore Dia (mm)	9 - 25	9 - 28	11 - 32	14 - 42	14 - 42	14 - 50	16 - 60	25 - 75	35 - 75

Code	3525	3535	4030	4040	4535	4545	5040	5050
Bore Dia (mm)	35 - 100	35 - 90	40 - 115	40 - 100	55 - 125	55 - 110	70 - 125	70 - 125

Reliable | Trusted | Connected

Classical Timing Belt

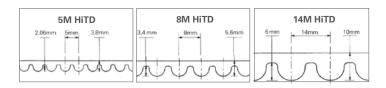
Classical Timing Belt Relative Power + 65%


Fenner Classic Timing Belts are squared toothed belts. In conjunction with their associated pulleys, classical belts provide an economic solutions for light drive applications.

Benefits

- > Classical profile imperial pitch belts
- > Efficient and economical
- > Ambient operating temperature -20°C to +100°C
- > Ozone resistant
- > Fully approved by all international standards
 - > ISO 5296 (International Standards Organisation)
 - > BS 4548 (British Standard)

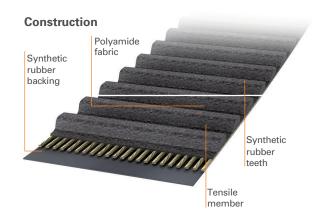
Construction


HiTD High Torque Drive Belt

HiTD Synchronous Belt Relative Power +100%

Fenner HiTD Timing Belts are the first generation of HTD metric curvilinear tooth form synchronous belts for high torque drives.

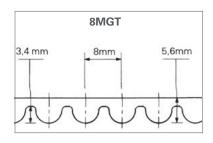
Benefits

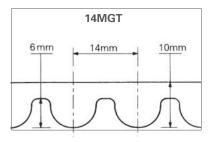

- Curvilinear tooth improves stress distribution for higher tooth strength
- > Offers a more compact drive than classical timing belt drives
- > Fully approved by all international standards
- > ISO 13050 (International Standards Organisation)
- > Ambient operating temperature -20°C to +100°C
- > Ozone-resistant

Size Reference

Size Reference							
5M	HiTD	305 to 2525 mm	8M HiTD	480 to 2800 mm			
14M	HiTD	966 to 4578 mm					

Reliable | Trusted | Connected

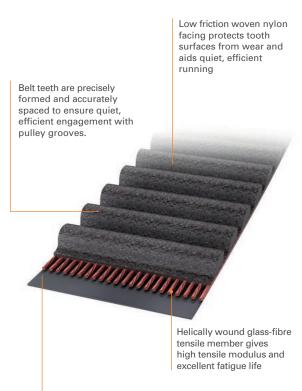

Torque Drive PLUS 3


HTD Synchronous Drive PLUS 3 Belt Relative Power + 150%

The state-of-the-art Fenner® Torque Drive PLUS 3 (TDP3) works with standard HTD pulleys to provide the ultimate combination of power capacity, low noise and high accuracy in a belt drive. Manufactured using the latest materials and production technology, Fenner® Torque Drive PLUS 3 continues to push the boundaries of belt engineering.

Benefits

- > The highest power rating for rubber/glassfibre belts
- > Enhanced compounding and glassfibre cord excel in highly dynamic applications
- > Minimum backlash for precise positioning
- > Ultra compact and cost effective drives
- > Polyamide facing layer reduces noise and belt tooth wear
- > Runs optimally on standard HTD pulleys
- > Fully approved by all international standards
- > AH category 2 according to 2014 AfPSS:01 PAK
- > ISO 13050 (International Standards Organisation)
- > Anti-static as standard to ISO 9563 (1990)
- > Ambient operating temperature -25°C to +100°C



Size Reference

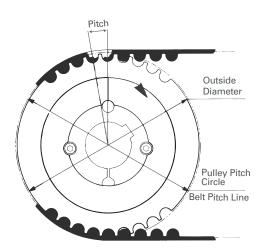
480 to 2800 mm **14MGT** 8MGT

966 to 4578 mm

Construction

Flexible, durable chloroprene backing polymer encapsulates the tensile cords and protects them from containments and mechanical damage

Reliable | Trusted | Connected


Synchronous Pulleys

Synchronous Pulleys Relative Power +100%

Fenner® synchronous pulleys are manufacturedfrom high grade iron (GG25), tolerate shock loading and achieve rim speeds of up to 40 m/s.

Benefits

- > Available in both classical Timing and HTD profiles
- > Statically balanced to exceed grade G 6.3 (ISO 1940)
- > Rim speeds up to a maximum of 40m/s
- Blackened to reduce corrosion, acts as an ideal primer and removes the need for cleaning coating agents prior to installation
- Precision machined grooves to protect and maximise belt life whilst reducing noise
 Taper Lock® mounting, for quick and simple installation
- > Special designs and sizes available

Pulleys

The three principal dimensions of a pulley are **number of grooves**, **pitch and width** and are used in this order as a designation e.g. 72-8M-50.

On the pulley, pitch is the distance between groove centres and is measured on the pulley pitch circle. The Pitch Circle of the pulley coincides with the pitch line of the belt running in it. The pulley pitch diameter is always greater than its outer diameter.

Size Reference

5mm	28T to 136T	8mm	22T to 192T
14mm	28T to 192T		

Construction

Balanced to exceed grade G6.3 (ISO 1940)

Fenner S.C.I.E.N.C.E. Explained

Did you know that 70% of friction drives are incorrectly installed?

That figure is quite astounding particularly when you consider how many applications are dependant on the efficiency and reliability of friction belt drives.

But don't panic, with a just a few simple steps and the assistance of your Local Authorised Fenner Distributor, we can ensure that your belt drives (and chain drives) achieve their optimum efficiency, full operating life and provide reliable performance.

With Fenner it's all about the **S.C.I.E.N.C.E.** - Select Correctly, Install Effectively, Never Compromise Efficiency, if you adhere to these simple rules you can be confident that your drive selection will perform.

Select Correctly

A correctly selected drive for your application will ensure the drive uses the fewest number of belts or the absolute minimum of belt width, which in turn.

- > Reduces loading on the machines bearings increasing the life cycle of the machine, reducing downtime and the risk of mechanical failure
- > Reduces the noise levels keeping noise pollution to a minimum at high speeds
- > Reduces the amount of raw materials and resources used cutting down on waste an subsequent pollution

Install Effectively

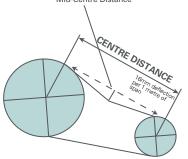
Correct installation - once you have carefully selected your belt drive components - is paramount to the longevity and efficiency of your belt drive, by following the correct installation procedures to the letter and by using the right tools for the job, such as the Fenner laser alignment and tensioning devices, we can;

- > Reduce the vibration to which the machine bearings are subjected, prolonging machine life, minimising downtime and reducing the risk of severe damage to the driven machine
- > Ensure the drive operates and delivers its maximum rated power at its premium efficiency, reducing both waste and pollution
- Supply a drive which gives the maximum drive life available on the market using the minimum of resource to maintain

Never Compromise Efficiency

By including belt drives as an integral part of a planned maintenance schedule you can:

- > Ensure the process up-time is at an absolute maximum giving the ultimate production output maximising operational efficiency
- > Prolong the life of the drive and negate the need to waste costly resources on breakdowns and drive problems
- > Extend drive, machine and bearing life to the maximum, using less rawv materials and guarantee sustainability.


Remember your drive stands or falls by the accuracy of its installation, so take the time to get this right and you will reap the rewards. Use the S.C.I.E.N.C.E

Fenner Accessories

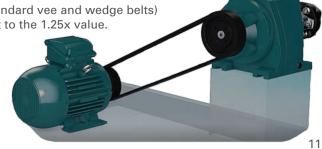
The setting forces opposite are designed to cover a wide range of drives. A precise setting force for individual applications can be calculated. Please consult FPT Technical Services, or use the 'Fenner Select' design software.

Belt Tension Indicator

The Fenner Belt Tension Indicator is a simple tool that helps ensure accurate belt tension - a correctly tensioned drive avoids belt slippage which can reduce overall drive efficiency.

D 1/ O 1/	Setting F	orce to Deflect	Belt 16mm per	metre of span	
Belt Section	Small pulley diameter (mm)	Basic settir Newton (kg)	ng forces Kilograms (kgf)	1.25 x Setti Newton (kg)	ng Forces Kilograms (kgf)
SPZ	56 to 71	16	1.6	20	2.0
XPZ	75 to 90	18	1.8	22	2.2
	95 to 125	20	2.0	25	2.5
	over 125	22	2.2	28	2.8
SPA	56 to 71	22	2.2	28	2.8
XPA	75 to 90	30	3.0	38	3.9
	95 to 125	36	3.7	45	4.6
	over 125	40	4.0	50	5.1
SPB	56 to 71	40	4.0	50	5.1
XPB	75 to 90	50	5.1	62	6.3
	95 to 125	62	6.3	77	7.9
	over 125	65	6.6	81	8.3
SPC	56 to 71	70	7.1	87	8.9
XPC	75 to 90	92	9.4	115	12
	95 to 125	115	12	144	15
8V	over 125	150	15	190	19
Z	335 & above	5 to 7.5	0.5 to 0.8		
A & HA banded	56 to 100	10 to 15	1.0 to 1.5		
В	80 to 140	20 to 30	2.0 to 3.1		
С	125 to 200	40 to 60	4.1 to 6.1		
D	200 to 400	70 to 105	7.1 to 10.7		

Fenner Belt Tension Indicator


"ONE SHOT" TENSIONING

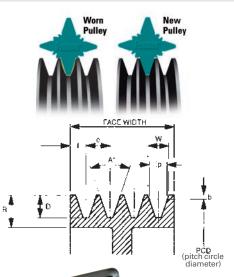
Fenner Belts are built to ensure precise inherent length and to stay matched during storage and on the drive. Over many years, the principle of "oneshot" tensioning has been verified by successful drives the world over.

- > Install the belts to be a snug fit around the pulleys.
- > Spin the pulleys 3-4 revolutions to bed belts into the pulley grooves.

 (Note: if done manually, beware of finger entrapment between belts and pulleys)
- > Tension the belts to the 1.25 x setting forces from the table.
- > Run the drive under load for 15-20 minutes.
- > Stop the drive, check tension & reset to the basic value (standard vee and wedge belts) If necessary. CRE Plus & Quattro Plus belts should be reset to the 1.25x value.

With a drive that is properly designed for the application there should be no need for further attention during the life of the belts. For short centre distance drives where the deflection of the belt is too small to measure accurately it is recommended that both deflection and setting force be doubled.

Reliable | Trusted | Connected



Method of belt tensioning using Fenner Belt Tension Indicator

- Calculate the deflection in mm on a basis of 16mm per metre of centre distance. Centre distance (metres) x 16 = deflection (mm).
- Set the lower marker ring at the deflection distance required in mm on the lower scale.
- > Set the upper marker ring against the bottom edge of the top tube.
- > Place the belt tension indicator on top of the belt at the centre of span, and apply a force at right angles to the belt, deflecting it to the point where the lower marker ring is level with the top of an adjacent belt.
- > Read off the setting force value indicated by the top edge of the upper marker ring.
- > Compare this force to the kgf value shown in the table.
- > If a Fenner Belt Tension Indicator is not available, a spring balance and rule will suffice.
- > With banded belts use a bar across the band width to ensure even distribution of the force and divide the force measured by the number of belts in the band for comparison with the values in the table above.

Fenner Drive Alignment Laser Product Ref: 230L0000

The Fenner Drive Alignment Laser is the perfect tool for pulley and sprocket alignment. Applied magnetically in just a few seconds, the laser line projects onto targets allowing rapid adjustment for perfect alignment.

Pulley Groove Gauge

When installing new belts, the condition of the pulleys is often overlooked. 50% of new belts are fitted to worn pulleys, which can waste up to 10% of your energy input. The Fenner groove gauge can quickly help you assess the health of your pulleys.

Pulley Groove Dimensions

and dicete billioners								
Pulley	Aº	D	e*	f	b	ln	W	R
PCD	<u>+</u> 0,5°	+ 0,03 - 0,0	<u>+</u> 0,15	<u>+</u> 0,3	± 0,13	.lb		NOM
Up to 80	34	11.0	12	Q	2.0	85	9,7	17,25
Over 80	38	11,0		U	2,0	0,0	9,9	17,20
Up to 118	34	10.75	15	10	2.75	11	12,7	21.25
Over 118	38	13,/5	15	10	2,75	11	12,9	21,25
Up to 190	34	4==	40	40 =	0.5	4.4	16,1	
Over 190	38	17,5	19	12,5	3,5	14	16,4	27,25
Up to 315	34						21,9	
Over 315	38	23,8	25,5	17	4,8	19	22,3	37,25
	Pulley PCD Up to 80 Over 80 Up to 118 Over 118 Up to 190 Over 190 Up to 315	Pulley A° PCD ± 0,5° Up to 80 34 Over 80 38 Up to 118 34 Over 118 38 Up to 190 34 Over 190 38 Up to 315 34	Pulley PCD A° ± 0,5° D + 0,03 - 0,0 Up to 80 Over 80 34 Over 118 11,0 Up to 118 Over 118 34 Over 190 13,75 Up to 190 Over 190 34 Over 190 17,5 Up to 315 34 13,75	Pulley PCD A° ± 0,5° ± 0,03 - 0,0 D ± 0,15 Up to 80 Over 80 34 Over 118 11,0 12 Up to 118 Over 118 Over 118 Over 190 Ove	Pulley PCD A° ± 0,5° ± 0,5° + 0,03 - 0,0 e* ± 0,15° ± 0,3 f ± 0,3 Up to 80 Over 80 34 Over 80 11,0 12 8 Up to 118 Over 118 Over 118 Over 190 34 Over 190 15 Over 190 15 Over 190 12,5 Up to 315 Over 190 34	Pulley PCD Aº ± 0,5° ± 0,03 - 0,0 e* ± 0,15 f ± 0,3 b ± 0,13 Up to 80 Over 80 34 Over 80 11,0 12 8 2,0 Up to 118 Over 118 Over 190 Over 190 34 Over 190 15 10 2,75 Up to 315 Over 190 Over 190 Over 190 34 Over 190 Over 190 34 Over 190 Over	Pulley PCD A° ± 0,5° ± 0,5° + 0,03 - 0,0 e * to,15° ± 0,15 f ± 0,3° ± 0,13 lp Up to 80 Over 80 34 38 11,0 12 8 2,0 8,5 Up to 118 Over 118 38 Over 118 38 Over 190 34 Over 190 38 17,5 19 12,5 3,5 14 Up to 315 34 34 00 0 35,5 40 0 10	Pulley PCD A° ± 0,5° ± 0,03 - 0,0 D ± 0,15 e* t 0,15 f b ± 0,3 b ± 0,13 lp W Up to 80 Over 80 34 38 11,0 12 8 2,0 8,5 9,7 9,9 Up to 118 34 Over 118 38 13,75 15 10 2,75 11 12,7 12,9 Up to 190 34 Over 190 38 17,5 19 12,5 3,5 14 16,1 16,4 Up to 315 34 10 34 <t< td=""></t<>

^{*}e dimension – the tolerance shown is between any two grooves.

Belt Efficiency Kit Product Ref: 230K0000

Get the most from your wedge belt drives with the Fenner Belt Efficiency Kit. The kit contains all the tools necessary to help achieve optimum performance: Belt Tension Indicator, Pulley Groove Gauge and a simple guide to efficient wedge belt efficiency.

Arthur Andrews
Reliable | Trusted | Connected

Fenner Wedge Belts PA Chart

<u> </u>			, , ,	
Pitch Length mm	3V 1/10"	SPZ	XPZ	OXPZ
487	-	1	-	-
512	-	1	-	-
562	-	1	-	-
587	-	1	-	-
612	-	/	-	-
630	250	/	/	/
637	-	/	-	-
662	-	/	-	-
670	-	/	/	/
687	-	1	-	- ,
710	280	1	/	V
722	-	1	_	-
737 750	-	1		- /
750 760	300	1	'	✓
700	300	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- - - - - - - - -	- - - - -
787	_		_	-
800	315	1	1	1
812	-			_
825	_	/	_	-
837	-	/	_	-
850	-	1	- - - -	1
862	-	1	-	-
875	-	1	-	-
887	-	1	- - - -	-
900	355	1	1	1
912	-	1	- - - - - - -	-
925	-	1	-	-
937	370	-	/	-
940	-	/	/	-
950	-	/	/	
962	-		-	-
987	-	\	-	-
1000	- 400	/	/	V
1010 1024	400	1	'	_
1024		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	_
1037	_	1	_	
1060	_	1	1	1
1077	_	_	1	_
1080	425	\frac{1}{\sqrt{1}}	_	-
1087	-	/	- - - - -	-
1112	_	1	_	-
1120	_	/	1	1
1137	-	-	/	-
1140	450	1	1	-
1150	-	-	-	1

Pitch Length mm	3V 1 _{/10} "	SPZ	XPZ	OXPZ
1162	-	\frac{1}{1}	-	-
1180	-	1	1	1
1187	-	1	-	-
1200	475	/	1	-
1212	-	/	- - - -	-
1220	-			/
1237	-	1	-	-
1250	-	1	/	/
1262	500	1	-	-
1270		1	V	-
1287 1312	-	1	-	V
1312	-	/	_	-/
1337	_	_	/	_
1340	530	/	1	_
1347		1	_	_
1360	-	_	1	_
1362	_	1	_	_
1387	_	/	_	_
1400	-	/	1	1
1412	-	1	-	-
1420	560	1	1	-
1437	-	1	-	-
1450	-			
1462	-	1	1	-
1470	580	1	1	-
1487	-	/	-	-
1500	-	/	1	/
1512	-	/	-	-
1520	600	1	/	-
1537	- 617 - 630	1	-	/
1560	617	1	/	-
1587 1600	620	1	1	-
1612	- 030	/	_	_
1637	- - 650	/		_
1650	650	1	1	_
1662	-	1	_	_
1687	_	1	_	_
1700	670		1	1
1737	_		-	-
1762	-	1	-	-
1787	-	1	-	-
1800	710	1	1	1
1812	-	1	-	-
1837	-	1	-	-
1850	730	1	/	-

Pitch Length mm	3V 1/10"	SPZ	XPZ	OXPZ	
1862	-	1	-	-	
1887	-	/	-	-	
1900	750	1	-	1	
1937	-	/		-	
1987	800	1	-	-	
2000	-	1	- - /	1	
2030	-	1	-	-	
2037	-	/	-	-	
2040	-	-	- - - - - -	-	
2120	-	1	1	1	
2137	-	1	-	-	
2160	850	/	1	-	
2187	-	1	-	-	
2240	-	\frac{1}{\sqrt{1}}	-	1	
2262	-	1	-	-	
2280	900	1	-	-	
2287	-	1	-	-	
2360	-	1	-	-	
2410	950	1	1	-	
2500	-	1	1	-	
2540	1000	1	1	-	
2650	-	1	1	- - /	
2690	1060	1	1	-	
2800	-	1	1	1	
2840	1120	1	1	-	
3000	1180	1	1	- - /	
3150	-	1	1	/	
3170	1250	1	-	-	
3350	-	/			
3550	1400	1	√	/	
	Unit Lengt				
Section	kg/m	XP kg/m	QXP kg/r	n	
SPZ	0.07	0.06	0.07		
SPA	0.12	0.11	0.12		
SPB	0.19	0.18	0.19		
SPC	0.32	-	0.36		
8V	0.54	-	-		
Working Temps -40 to +70°C -40 to +80°C (QXP)					

Note: Dimensions in millimeters unless otherwise stated.

Fenner Wedge Belts PA Chart

SPA/XPA/QXPA

₹ ±			
Pitch Length mm	SPA	XPA	ОХРА
732	1	-	-
757	***************************************	-	-
800	/	- - - -	1
807	/	_	-
825	/	_	_
832	/	_	-
850	/	1	1
857	/	_	-
875	/	_	_
882	/	_	-
900	1	1	1
907	1	_	-
925	1	1	_
932	1	_	_
950	1	1	1
957	1	_	-
975	/	_	_
983	/	_	_
1000	1	_/	/
1007	1	_	-
1030	1	_	
1060	1	1	1
1082	/	· -	-
1090	1	1	_
1107	1	_	_
1120	1	1	1
1132	1		-
1150	/	_	_
1157	/	_	_
1180	/	_/	1
1207	1	1	-
1220	1		_
1232	1	_	_
1250	1	1	1
1257	/		-
1272	1	_	_
1280	1	1	_
1307	/	_	_
1320			1
1332	1	_	-
1357	/	_	_
1360	/	_	_
1382	1	1	_
1400	1	1	1
1407	1		-
1432	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- √ √ - √	_
1450	1		-

Pitch Length mm	SPA	XPA	ОХРА
1457	1	-	-
1482	/	-	_
1500	1	1	1
1507	1	-	-
1532	1	1	-
1550	1	1	1
1557	1	-	-
1582	1	-	-
1600	1	1	1
1607	/	-	-
1632		-	
1650	/	/	/
1657	/	-	-
1682	\	-	- ,
1700	1	√	V
1707 1732	1	-	-
1752	/	_	-,
1757	/	_	_
1782		_	_
1800	/	1	1
1807	/	-	_
1832	/	-	_
1850	1	1	1
1857	1	-	-
1882	1	-	-
1900	1	1	1
1907	/	-	-
1932	/	-	-
1950		/	/
1957	/	-	-
1982	1	-	-,
2000	1	V	~
2032 2057	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
2060	/		
2082	1	_	_
2120	/	1	1
2132	/	_	_
2180		-	_
2207	1	-	_
2232	1	- √ √	-
2240	- √ √	1	1
2360	1	1	1
2382	1	-	-
2430	1	1	-
2482	1	-	-

Pitch Length mm	SPA	XPA	OXPA
2500	1	1	1
2532	1	-	-
2580	1	-	-
2607	1	-	-
2632	1	-	-
2650	1	1	1
2682	1	-	-
2720	/	-	-
2732	/	-	-
2782	/	-	-
2800	/	/	1
2832	/	-	-
2847	/	-	-
2882	/	-	-
2900	1	-	-
2932	1	-	-
2982	1	-	-
3000	1	1	1
3032	1	-	-
3082	/	- - - - - -	-
3150	/	1	1
3182	/	-	-
3282	/	-	-
3350	/	/	-
3382	/	-	-
3550	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	√	1
3750		-	-
4000		-	/
4250		-	-
4500	/	-	-

Dia la /laura au Lauradha							
Pitch/Inner Lengths							
Section	Lp-Li (mm)	Section	Lp-Li (mm)				
SPZ	37	XPA	44				
SPA	45	XPB	58				
SPB	60	QXPZ	30				
SPC	90	QXPA	40				
8V	120	QXPB	60				
XPZ	38	QXPC	80				
Pitch/Inner Lengths							
Section	Lp-Lo (mm)	Section	Lp-Lo (mm)				
SPZ	13	SPB	22				
CDV	10	SDC	20				

Note: Dimensions in millimeters unless otherwise stated.

Fenner Wedge Belts PA Chart

82228	*	D / (UNI	D
Pitch Length mm	5V 1/10"	SPB	XPB	ОХРВ
1250	-	1	1	1
1260	500	1	1	-
1320 1340	530	1	1	1
1400	230	1	1	_
1410	- 560	1	/	_
1500	-	1	1	1
1550	-	1	-	-
1600 1670	630	1	_	✓
1700	_	1	/	/
1750	- 710	1	-	-
1800	710	1	1	1
1850	-	1	-	-
1900 1950	_	1	_	_
2000	_	/	1	1
2020	800	1	1	-
2060	-	1	-	-
2120 2150	- 850	1	1	/
2240		1	1	1
2280	900	1	1	-
2360	950	1	1	1
2410	950	1	/	-
2450 2500	-	1		-/
2530	1000	/	/	-
2580	-	1	-	-
2650	1060	1	1	1
2680 2720	1060	1	/	-
2800	_	1		
2840	1120	1	/	_
2900	- 1180	1	-	-
3000	1180	1	1	1
3150 3170	- 1250	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -\
3250	1250 1320	/	_	_
3350	1400	1	1	1
3450	1400	√		

Pitch Length mm	5V 1/10"	SPB	XPB	ОХРВ
3550	_	1	1	1
3750	1500	1	_	1
3800	-	1	-	-
3870	-	1	-	-
4000	-	1	-	1
4060	1600	1	-	- / / / / / / /
4250	-	1	-	1
4310	1700	1	-	1
4500	-	/	-	/
4560	1800	/	-	-
4750	-	/	-	-
4820	1900	/	-	-
5000	-	/	-	-
5070	2000	/	-	-
5300	- 0100	/	-	-
5380	2120	1	-	-
5600	-	1	-	-
5680	2240 2360	/	-	-
6000	2300	/	-	-
6300 6340	2500	/	-	-
6700	2300	/	-	-
7100	2800	/	_	_
7500	2000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_	_
8000	3150	/	_	_
0000	3130	•	_	_

22 → 20 → 20 → 20 → 20 → 20 → 20 → 20 →	18	SF Q)	PC / (PC	

Pitch Length mm	SPC	ОХРС
2000	✓	✓
2120	1	1
2240	✓	✓
2360	✓	✓
2500	1	/
2650	✓	/
2800	/	/
3000	1	/
3150	1	1
3350	✓	1
3550	1	1
3750	✓	1

Pitch Length mm	SPC	OXPC
4000	1	✓
4060	-	> > > > > > > > > > > > > > > > > > >
4250	1	✓
4310	1	1
4500	✓	√
4750	✓	✓
5000	✓	✓
5300	√	-
5600	√	-
6000	√	-
6300	✓	-
6700	✓	-
7100	✓	-
7500	1	-
8000	1	-
8500	1	-
9000	1	-
9500	1	-
10000	1	-
10600		-
11200	/	-
11800	/	-
12500	1	-

Metric	8V 1/10"
2540	1000
2840	1120
3180	1250
3550	1400
3810	1500
4060	1600
4570	1800
5080	2000
5690	2240
6350	2500
7100	2800
8000	3150
9000	3550
10160	4000
11430	4500

Note: Dimensions in millimeters unless otherwise stated. Additional sizes available upon request.

Reliable | Trusted | Connected

Fenner Classic V Belts PA Chart

Z Section Pitch Length

Z370 Z395 Z410 Z420 Z445 Z470 Z480 Z495	Z570 Z600 Z610 Z620 Z630 Z650 Z660 Z700	Z840 Z850 Z860 Z875 Z890 Z900 Z920 Z930	Z1015 Z1035 Z1055 Z1080 Z1105 Z1130 Z1155 Z1205	
		_0.0		
Z410	Z610	Z860	Z1055	
Z420	Z620	Z875	Z1080	
Z445	Z630	Z890	Z1105	
Z470	Z650	Z900	Z1130	
Z480	Z660	Z920	Z1155	
Z495	Z700	Z930	Z1205	
Z510	Z725	Z940	Z1270	
Z520	Z750	Z950	Z1330	
Z530	Z780	Z965	Z1380	
Z545	Z800	Z980	Z1420	
Z560	Z820	Z990	Z1750	

A Section

A540	A1150	A1790	A2420	
A570	A1180	A1810	A2450	
A590	A1200	A1840	A2480	
A620	A1230	A1860	A2500	
A640	A1250	A1890	A2570	
A670	A1280	A1920	A2630	
A700	A1300	A1940	A2650	
A720	A1330	A1960	A2680	
A740	A1360	A1990	A2700	
A770	A1380	A2020	A2750	
A790	A1410	A2050	A2780	
A820	A1430	A2070	A2830	
A850	A1460	A2090	A2880	
A870	A1480	A2120	A2910	
A890	A1510	A2140	A2960	
A920	A1530	A2170	A2980	
A930	A1550	A2200	A3080	
A950	A1580	A2220	A3190	
A970	A1610	A2240	A3290	
A990	A1640	A2270	A3440	
A1020	A1660	A2300	A3490	
A1050	A1690	A2320	A3540	
A1070	A1710	A2350	A3690	
A1100 A1130	A1740 A1760	A2370 A2400	A3950	

Note: Dimensions in millimeters unless otherwise stated.

B Section

Pitch Length

B1460	B2180	B3140
	B2200	B3090
	B2230	B3200
		B3240
		B3290
B1590	B2300	B3350
B1620	B2330	B3400
B1640	B2350	B3450
B1670	B2380	B3500
B1690	B2400	B3550
B1720	B2420	B3600
B1740	B2450	B3700
B1760	B2480	B3800
B1800	B2500	B3850
B1820	B2530	B3870
B1850	B2580	B3900
B1870	B2630	B3950
B1900	B2660	B4060
B1920	B2680	B4160
B1950	B2700	B4310
B1970	B2740	B4430
B2000	B2790	B4610
B2020	B2840	B4740
B2050	B2870	B5000
B2070	B2890	B5220
B2100	B2940	B5370
B2130	B2990	B5580
B2150	B3040	B5630
	B1490 B1510 B1540 B1560 B1590 B1620 B1640 B1670 B1690 B1720 B1740 B1800 B1820 B1850 B1870 B1900 B1920 B1950 B2000 B2020 B2050 B2070 B2100	B1490 B2200 B1510 B2230 B1510 B2230 B1560 B2280 B1560 B2280 B1590 B2300 B1620 B2330 B1640 B2350 B1670 B2380 B1690 B2400 B1720 B2420 B1760 B2480 B1800 B2500 B1820 B2530 B1870 B2630 B1990 B2660 B1920 B2680 B1970 B2700 B2900 B2790 B2020 B2840 B2050 B2870 B2070 B2890 B2100 B2940 B2130 B2990

C Section

B6070

Pitch Length

C1300	C1860	C2420	C2900
C1350	C1880	C2440	C2950
C1450	C1950	C2490	C3000
C1480	C2010	C2520	C3080
C1530	C2040	C2550	C3100
C1560	C2090	C2600	C3210
C1580	C2110	C2650	C3310
C1650	C2160	C2700	C3360
C1700	C2190	C2720	C3460
C1760	C2200	C2800	C3520
C1780	C2270	C2850	C3560
C1830	C2340	C2880	C3610

C3660	C4500	C5720	C7600
C3710	C4600	C5850	C7620
C3760	C4630	C6100	C8030
C3870	C4750	C6150	C8390
C3920	C4780	C6360	C9100
C3970	C4880	C6610	C9150
C4060	C5010	C6660	C9760
C4170	C5140	C6860	C10670
C4220	C5240	C6910	C10700
C4320	C5380	C7120	C11330
C4450	C5640		

D4620

D6120

D Section Pitch Length

D4650	D6170	D8410
D5030	D6840	D9140
D5260	D6890	D9170
D5400	D6940	D9830
D5790	D7620	D9980
D5870	D7650	D10700
D6100	D7700	D12200
	D5030 D5260 D5400 D5790 D5870	D5030 D6840 D5260 D6890 D5400 D6940 D5790 D7620 D5870 D7650

D8050

D13700

	ss/Unit gth mm		h/Inside gths mm
Section	kg/m	Section	L _P - L ₁ (mm)
Z	0,055	Z	26
Α	0,094	Α	34
В	0,163	В	45
С	0,284	С	58
D	0,560	D	85

Working Temps -40 to +70°C

Note:

C Section: Pitch lengths > 6910 D Section: Pitch lengths > 7650

The above may not be available ex-stock. Consult your local distributor for


availability.

 $Lp = Pitch \ Length \quad Lo = Outside \ Length \quad Li = Inner \ Length$

Our Presence in Asia Pacific

Fenner® products conform to international standards, as such, we can advise that all Fenner® products comply with appropriate national and international standards in terms of design, performance and safety / environmental requirements. Where appropriate international standards (ISO) exist, these take priority over national standards. In respect of some operational safety and environmental requirements, some European standards (EN) are considered definitive worldwide.

Fenner is a registered trademark of J.H. Fenner & Co. Limited

Fenner®

FPT Far East Pte. Ltd

(65) 6545 6630 **(**65) 6545 7730 / 7720

sales@fpt.com.sg

f @fennerSEA

@ @fennerseasia

in @fptfareast

www.fpt.com.sg

